COMMENTS ON "A THEORY OF ORDINARY P-ADIC CURVES"

Shinichi Mochizuki

March 2022

- (1.) The notation " $\mathcal{E} \to \tau_{X^{\log}/S^{\log}}$ " in [pOrd], Chapter II, Proposition 2.6, (1), should read " $\mathrm{Ad}(\mathcal{E}) \to \tau_{X^{\log}/S^{\log}}$ ".
- (2.) With regard to the notation " $(X_T^{\log})_{\mathbb{Q}_p}$ ", " $(X_P^{\log})_{\mathbb{Q}_p}$ " in the paragraph immediately preceding Theorem 0.4, we note the following: Let K be a finite extension of \mathbb{Q}_p and \mathfrak{Y} a formally smooth p-adic formal scheme over the ring of integers \mathcal{O}_K of K, i.e., such as a suitable étale localization of X_T or one of the coverings that occurs in the inverse limit used to define X_P . Then $\mathfrak{Y} \times_{\mathbb{Z}_p} \mathbb{Q}_p$ (i.e., " $\mathfrak{Y} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ ") is defined as the *ringed space* obtained by tensoring the structure sheaf of \mathfrak{Y} over \mathcal{O}_K with K. Thus, if, for instance, \mathfrak{Y} is the formal scheme obtained as the formal inverse limit of an inverse system of schemes

$$\ldots \hookrightarrow \mathfrak{Y}_n \hookrightarrow \mathfrak{Y}_{n+1} \hookrightarrow \ldots$$

— where n ranges over the positive integers, and each " \hookrightarrow " is a nilpotent thickening — and U is an affine open of the *common* underlying topological space of the \mathfrak{Y}_n , then the rings of sections of the respective structure sheaves $\mathcal{O}_{\mathfrak{Y}}$, \mathcal{O}_Y of \mathfrak{Y} , Y over U are, by definition, given as follows:

$$\mathcal{O}_{\mathfrak{Y}}(U) \stackrel{\text{def}}{=} \varprojlim_{n} \mathcal{O}_{\mathfrak{Y}_{n}}(U); \quad \mathcal{O}_{Y}(U) \stackrel{\text{def}}{=} \mathcal{O}_{\mathfrak{Y}}(U) \otimes_{\mathcal{O}_{K}} K.$$

Here, we observe that $\mathcal{O}_{\mathfrak{Y}}(U)$ is the *p-adic completion* of a normal noetherian ring of finite type over \mathcal{O}_K . In particular, we observe that one may consider finite étale coverings of Y, i.e., by considering systems of finite étale algebras \mathcal{A}_U over the various $\mathcal{O}_Y(U)$ [that is to say, as U is allowed to vary over the affine opens of the \mathfrak{Y}_n] equipped with gluings over the intersections of the various U that appear. Note, moreover, that by considering the normalizations of the $\mathcal{O}_{\mathfrak{Y}}(U)$ in \mathcal{A}_U , we conclude [cf. the discussion of the Remark immediately following Theorem 2.6 in Section II of [Falt]] that

(NorFor) any such system $\{A_U\}_U$ may be obtained as the $W \stackrel{\text{def}}{=} \mathfrak{W} \times_{\mathcal{O}_K} K$ for some formal scheme \mathfrak{W} that is finite over \mathcal{Y} , and that arises as the formal inverse limit of an inverse system of schemes

$$\ldots \hookrightarrow \mathfrak{W}_n \hookrightarrow \mathfrak{W}_{n+1} \hookrightarrow \ldots$$

— where n ranges over the positive integers; each " \hookrightarrow " is a nilpotent thickening; for each affine open V of the common underlying topological space of the \mathfrak{W}_n , $\mathcal{O}_{\mathfrak{W}}(V)$ is the p-adic completion of a normal noetherian ring of finite type over \mathcal{O}_K .

Indeed, this follows from well-known considerations in commutative algebra, which we review as follows. Let R be a normal noetherian ring of finite type over a complete discrete valuation ring A [i.e., such as \mathcal{O}_K in the above discussion] with maximal ideal \mathfrak{m}_A and quotient field F such that R is separated in the \mathfrak{m}_A -adic topology. Thus, since A is excellent [cf. [EGA IV₂], Scholie 7.8.3, (iii)], it follows [cf. [EGA IV₂], Scholie 7.8.3, (ii)] that R is excellent, hence that the \mathfrak{m}_A -adic completion \widehat{R} of R is also normal [cf. [EGA IV₂], Scholie 7.8.3, (v)]. Then it is well-known and easily verified [by applying a well-known argument involving the trace map that the normalization of \widehat{R} in any finite étale algebra over $\widehat{R} \otimes_A F$ is a finite algebra over \widehat{R} . Let \widehat{S} be such a finite algebra over \widehat{R} . Then it follows immediately from a suitable version of "Hensel's Lemma" [cf., e.g., the argument of [AbsTpII], Lemma 2.1] that \hat{S} may be obtained, as the notation suggests, as the \mathfrak{m}_A -adic completion of a finite algebra S over R, which may in fact be assumed to be separated in the \mathfrak{m}_A -adic topology and [by replacing S by its normalization and applying [EGA IV₂], Scholie 7.8.3, (v), (vi)] normal. Let $f \in R$ be an element that maps to a non-nilpotent element of $R/\mathfrak{m}_A \cdot R$. Write $R_f \stackrel{\text{def}}{=} R[f^{-1}]; S_f \stackrel{\text{def}}{=} S \otimes_R R_f;$ \widehat{R}_f , \widehat{S}_f for the respective \mathfrak{m}_A -adic completions of R_f , S_f . Then it follows again from [EGA IV₂], Scholie 7.8.3, (v), that \widehat{S}_f , which may be naturally identified [since S is a finite algebra over R] with $\widehat{S} \otimes_{\widehat{R}} \widehat{R}_f$, is normal. That is to say, it follows immediately that

(NorForZar) the operation of forming normalizations [i.e., as in the above discussion] is compatible with Zariski localization on the given formal scheme.

On the other hand, one verifies immediately that (NorFor) follows formally from (NorForZar).

Bibliography

- [Falt]] G. Faltings, Crystalline Cohomology and p-adic Galois Representations, *Proceedings of the First JAMI Conference*, Johns Hopkins Univ. Press (1990), pp. 25-79.
- [EGA IV₂] A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique IV, Étude locale des schémas et des morphismes de schémas, Séconde partie, Publ. Math. IHES 24 (1965).
 - [pOrd] S. Mochizuki, A Theory of Ordinary p-adic Curves, Publ. Res. Inst. Math. Sci. 32 (1996), pp. 957-1151.
- [AbsTpII] S. Mochizuki, Topics in Absolute Anabelian Geometry II: Decomposition Groups and Endomorphisms, *J. Math. Sci. Univ. Tokyo* **20** (2013), pp. 171-269.